34 research outputs found

    Performance assessment of low-cost thermal cameras for medical applications

    Get PDF
    Thermal imaging is a promising technology in the medical field. Recent developments in low-cost infrared (IR) sensors, compatible with smartphones, provide competitive advantages for home-monitoring applications. However, these sensors present reduced capabilities compared to more expensive high-end devices. In this work, the characterization of thermal cameras is described and carried out. This characterization includes non-uniformity (NU) effects and correction as well as the thermal cameras´ dependence on room temperature, noise-equivalent temperature difference (NETD), and response curve stability with temperature. Results show that low-cost thermal cameras offer good performance, especially when used in temperature-controlled environments, providing evidence of the suitability of such sensors for medical applications, particularly in the assessment of diabetic foot ulcers on which we focused this study.This research was funded by the IACTEC Technological Training program, grant number TF INNOVA 2016-2021, and by the European Union Interreg-Mac funding program, grant number MAC/1.1.b/098 (MACbioIDi project)

    A Novel Approach of a Low-Cost UWB Microwave Imaging System with High Resolution Based on SAR and a New Fast Reconstruction Algorithm for Early-Stage Breast Cancer Detection

    Get PDF
    In this article, a new efficient and robust approachÂżthe high-resolution microwave imaging systemÂżfor early breast cancer diagnosis is presented. The core concept of the proposed approach is to employ a combination of a newly proposed delay-and-sum (DAS) algorithm and the specific absorption rate (SAR) parameter to provide high image quality of breast tumors, along with fast image processing. The new algorithm enhances the tumor response by altering the parameter referring to the distance between the antenna and the tumor in the conventional DAS matrices. This adjustment entails a much clearer reconstructed image with short processing time. To achieve these aims, a high directional Vivaldi antenna is applied around a simulated hemispherical breast model with an embedded tumor. The detection of the tumor is carried out by calculating the maximum value of SAR inside the breast model. Consequently, the antenna position is relocated near the tumor region and is moved to nine positions in a trajectory path, leading to a shorter propagation distance in the image-creation process. At each position, the breast model is illuminated with short pulses of low power waves, and the back-scattered signals are recorded to produce a two-dimensional image of the scanned breast. Several simulations of testing scenarios for reconstruction imaging are investigated. These simulations involve different tumor sizes and materials. The influence of the number of antennas on the reconstructed images is also examined. Compared with the results from the conventional DAS, the proposed technique significantly improves the quality of the reconstructed images, and it detects and localizes the cancer inside the breast with high quality in a fast computing time, employing fewer antennas

    Bimodal microwave and ultrasound phantoms for non-invasive clinical imaging

    Get PDF
    A precise and thorough methodology is presented for the design and fabrication of bimodal phantoms to be used in medical microwave and ultrasound applications. Dielectric and acoustic properties of human soft tissues were simultaneously mimicked. The phantoms were fabricated using polyvinyl alcohol cryogel (PVA-C) as gelling agent at a 10% concentration. Sucrose was employed to control the dielectric properties in the microwave spectrum, whereas cellulose was used as acoustic scatterer for ultrasound. For the dielectric properties at microwaves, a mathematical model was extracted to calculate the complex permittivity of the desired mimicked tissues in the frequency range from 500 MHz to 20 GHz. This model, dependent on frequency and sucrose concentration, was in good agreement with the reference Cole-Cole model. Regarding the acoustic properties, the speed of sound and attenuation coefficient were employed for validation. In both cases, the experimental data were consistent with the corresponding theoretical values for soft tissues. The characterization of these PVA-C phantoms demonstrated a significant performance for simultaneous microwave and ultrasound operation. In conclusion, PVA-C has been validated as gelling agent for the fabrication of complex multimodal phantoms that mimic soft tissues providing a unique tool to be used in a range of clinical applications.Tis work was supported by the IACTEC Technological Training program (TF INNOVA 2016-2021) and European Union Interreg-Mac funding program under grant MAC/1.1.b/098 (MACbioIDi project). Te authors would like to thank the Medical Technology for Sustainable Development from the Instituto Universitario de Investigación Biomédica y Sanitaria (IUIBS), Universidad de Las Palmas de Gran Canaria, for the loan of US equipment

    Morphological foot model for temperature pattern analysis proposed for diabetic foot disorders

    Get PDF
    Infrared thermography is a non-invasive and accessible tool that maps the surface temperature of a body. This technology is particularly useful for diabetic foot disorders, since it facilitates the identification of higher risk patients by frequent monitoring and therefore limits the incidence of disabling conditions. The aim of this work is to provide a methodology to explore the entire plantar aspects of both feet, based on infrared thermography, for the assessment of diabetic foot anomalies. A non-invasive methodology was established to identify areas of higher risk and track their progress via longitudinal monitoring. A standard morphological model was extracted from a group of healthy subjects, nine females and 13 males, by spatial image registration. This healthy foot model can be taken as a template for the assessment of temperature asymmetry, even in cases in which partial amputations or deformations are present. A pixel-wise comparison of the temperature patterns was carried out by Wilcoxon´s matched-pairs test using the corresponding template. For all the subjects, the left foot was compared to the contralateral foot, the right one, providing a map of statistically significant areas of variation, within the template, among the healthy subjects at different time points. In the female case, the main areas of variability were the boundaries of the feet, whereas for the male, in addition to this, substantial changes that exhibited a clear pattern were observed. A fast and simple monitoring tool is provided to be used for personalized medical diagnosis in patients affected by diabetic foot disorders.This research was funded by the IACTEC Technological Training program, grant number TF INNOVA 2016-2021. This work was completed while Abián Hernández was a beneficiary of a pre-doctoral grant given by the “Agencia Canaria de Investigacion, Innovacion y Sociedad de la Información (ACIISI)” of the “Consejería de Economía, Conocimiento y Empleo” of the “Gobierno de Canarias”, which is partly financed by the European Social Fund (FSE) (POC 2014-2020, Eje 3 Tema Prioritario 74 (85%))

    Wideband Epidermal Antenna for Medical Radiometry

    Get PDF
    Microwave thermometry is a noninvasive and passive technique for measuring internal body temperature. Wearable compact antennas, matched to the specific body area, are required for this method. We present a new epidermal wideband antenna for medical radiometry. The double asymmetric H-shaped slot antenna was designed to be matched to different parts of the body without fat layers. The slots are fed by a short-circuited microstrip line in order to decrease size and back radiation, thus reducing potential interferences. In this way, contribution to radiometric temperature due to back radiation is lower than 4%, versus the 20% of the volume under investigation, over the whole operating frequency band. The designed prototype was manufactured on a flexible substrate. The antenna is a very small size, to make it comfortable and suitable for being used by patients with different body mass indexes. The double H-shaped antenna shows good wideband matching results from around 1.5 GHz up to 5 GHz, in different body locations such as the neck, foot instep and foot sole

    Segmentation approaches for diabetic foot disorders

    Get PDF
    Thermography enables non-invasive, accessible, and easily repeated foot temperature measurements for diabetic patients, promoting early detection and regular monitoring protocols, that limit the incidence of disabling conditions associated with diabetic foot disorders. The establishment of this application into standard diabetic care protocols requires to overcome technical issues, particularly the foot sole segmentation. In this work we implemented and evaluated several segmentation approaches which include conventional and Deep Learning methods. Multimodal images, constituted by registered visual-light, infrared and depth images, were acquired for 37 healthy subjects. The segmentation methods explored were based on both visual-light as well as infrared images, and optimization was achieved using the spatial information provided by the depth images. Furthermore, a ground truth was established from the manual segmentation performed by two independent researchers. Overall, the performance level of all the implemented approaches was satisfactory. Although the best performance, in terms of spatial overlap, accuracy, and precision, was found for the Skin and U-Net approaches optimized by the spatial information. However, the robustness of the U-Net approach is preferred.This research was funded by the IACTEC Technological Training program, grant number TF INNOVA 2016–2021. This work was completed while Abián Hernández was beneficiary of a pre-doctoral grant given by the “Agencia Canaria de Investigacion, Innovacion y Sociedad de la Información (ACIISI)” of the “Consejería de Economía, Industria, Comercio y Conocimiento” of the “Gobierno de Canarias”, which is partly financed by the European Social Fund (FSE) (POC 2014–2020, Eje 3 Tema Prioritario 74 (85%))

    Assessment of registration methods for thermal infrared and visible images for diabetic foot monitoring

    Get PDF
    This work presents a revision of four different registration methods for thermal infrared and visible images captured by a camera-based prototype for the remote monitoring of diabetic foot. This prototype uses low cost and off-the-shelf available sensors in thermal infrared and visible spectra. Four different methods (Geometric Optical Translation, Homography, Iterative Closest Point, and Affine transform with Gradient Descent) have been implemented and analyzed for the registration of images obtained from both sensors. All four algorithms´ performances were evaluated using the Simultaneous Truth and Performance Level Estimation (STAPLE) together with several overlap benchmarks as the Dice coefficient and the Jaccard index. The performance of the four methods has been analyzed with the subject at a fixed focal plane and also in the vicinity of this plane. The four registration algorithms provide suitable results both at the focal plane as well as outside of it within 50 mm margin. The obtained Dice coefficients are greater than 0.950 in all scenarios, well within the margins required for the application at hand. A discussion of the obtained results under different distances is presented along with an evaluation of its robustness under changing conditions.This research was funded by the IACTEC Technological Training program, grant number TF INNOVA 2016–2021

    Low-cost pseudo-anthropomorphic PVA-C and cellulose lung phantom for ultrasound-guided interventions

    Get PDF
    A low-cost custom-made pseudo-anthropomorphic lung phantom, offering a model for ultrasound-guided interventions, is presented. The phantom is a rectangular solidstructure fabricated with polyvinyl alcohol cryogel (PVA-C) and cellulose to mimic the healthy parenchyma. The pathologies of interest were embedded as inclusions containing gaseous, liquid, or solid materials. The ribs were 3D-printed using polyethylene terephthalate, and the pleura was made of a bidimensional reticle based on PVA-C. The healthy and pathological tissues were mimicked to display acoustic and echoic properties similar to that of soft tissues. Theflexible fabrication process facilitated the modification of the physical and acoustic properties of the phantom. The phantom´s manufacture offers flexibility regarding the number, shape, location, and composition of the inclusions and the insertion of ribs and pleura. In-plane and out-of-plane needle insertions, fine needle aspiration, and core needle biopsy were performed under ultrasound image guidance. The mimicked tissues displayed a resistance and recoil effect typically encountered in a real scenario for a pneumothorax, abscesses, and neoplasms. The presented phantom accurately replicated thoracic tissues (lung, ribs, and pleura) and associated pathologies providing a useful tool for training ultrasound-guided procedures.This work was supported in part by Cabildo de Tenerife under IACTEC Technological Training Program, grant TF INNOVA 2016–2021, and the project MACBIOIDI2 MAC2/1.1b/352, within the INTERREG Program, funded by the European Regional Development Fund (ERDF)

    Multifrequency microwave radiometry for characterizing the Internal temperature of biological tissues

    Get PDF
    The analysis of near-field radiometry is described for characterizing the internal temperature of biological tissues, for which a system based on multifrequency pseudo-correlation-type radiometers is proposed. The approach consists of a new topology with multiple output devices that enables real-time calibration and performance assessment, recalibrating the receiver through simultaneous measurable outputs. Experimental characterization of the prototypes includes a welldefined calibration procedure, which is described and demonstrated, as well as DC conversion from the microwave input power. Regarding performance, high sensitivity is provided in all the bands with noise temperatures around 100 K, reducing the impact of the receiver on the measurements and improving its sensitivity. Calibrated temperature retrievals exhibit outstanding results for several noise sources, for which temperature deviations are lower than 0.1% with regard to the expected temperature. Furthermore, a temperature recovery test for biological tissues, such as a human forearm, provides temperature values on the order of 310 K. In summary, the radiometers design, calibration method and temperature retrieval demonstrated significant results in all bands, validating their use for biomedical applications.This work was supported, in part, by the Council of Tenerife under IACTEC Technological Training Program, grant TF INNOVA 2016-2021, and, in part, by the Spanish Ministry of Science and Innovation, under grants ESP2015-70646-C2-2-R and PID2019-110610RB-C22

    Analysis and performance assessment of a real-time correction pseudo-correlation microwave radiometer for medical applications

    Get PDF
    A new configuration of a pseudo-correlation type radiometer is proposed for a microwave biomedical application, such as diabetic foot neuropathy. The new approach as well as its simulated performance are thoroughly assessed using commercial off-the-shelf components and custom designed subsystems. We configured a pseudo-correlation receiver, centred at 3.5 GHz, to validate the proposal, comparing its simulated response with a measured alternative based on a 90Âş hybrid coupler pseudo-correlation prototype. We custom designed a balanced Wilkinson power divider and a 180Âş hybrid coupler to fulfil the receiver's requirements. The proposed configuration demonstrated an improved noise temperature response. The main advantage is to enable the recalibration of the receiver through simultaneous measurable output signals, proportional to each input signal, as well as the correlated response between them.This research was funded by the IACTEC Technological Training program, grant number TF INNOVA 2016-202
    corecore